Table of Contents

List of Contributors XV

Foreword XXI

Preface XXIII

Part I New Structural Aspects of Lithium Compounds 1

1 Structure–Reactivity Relationship in Organolithium Compounds 3

Elena Carl and Dietmar Stalke

1.1 Structural Principles in Organolithium Compounds 3

1.2 Donor–Base–Free Structures 4

1.2.1 Tetramers 4

1.2.2 Hexamers 6

1.2.3 Comparison of [Me3SiCH2Li]6 and [n–BuLi]6 7

1.3 Disaggregation with Lewis Bases 8

1.3.1 Tetramers of Alkylithium Compounds 9

1.3.2 Asymmetric Aggregates of [Me3SiCH2Li] (4) 11

1.3.3 An Octameric Aggregate of [Me3SiCH2Li]6 12

1.4 Donor–Base–Induced Dimers and Monomers 17

1.4.1 Alkylithium and Trimethylsilylmethylolithium Compounds 17

1.4.2 PMDETA Aggregated Monomers 24

1.5 Heterobimetallic Organolithium Compounds 25
2 Computational Perspectives on Organolithiums 33
Sten O. Nilsson Lill

2.1 Introduction 33

2.2 The Nature of Bonds to Lithium 34

2.3 Aggregation of Lithium Organic Compounds 35

2.4 Solvation Effects 36

2.5 Lithium Alkoxides and Lithium Amides 41

2.6 Computational Studies on Various Organolithium Applications 43

2.7 Conclusion and Outlook 46

References 47

Further Reading 51

3 Spectroscopic Advances in Organolithium Reactivity: The Contribution of Rapid-Injection NMR (RINMR) 53
Amanda C. Jones

3.1 Introduction 53

3.2 The Curtin–Hammett Principle 54

3.3 Organolithium NMR 55

3.4 Features of RINMR 58

3.4.1 Brief History 58
3.4.2 Apparatus Descriptions and Rapidity of Acquisition 59

3.4.3 Temperature Range and Control 60

3.4.4 Volume Accuracy of Injection 61

3.5 Use of RINMR to Study Organometallic Reactions 61

3.5.1 n-Butyllithium Aggregate Reactivity (1985) 61

3.5.2 Magnesium Chelates in Carbonyl Additions (1987/1990) 64

3.5.3 Lithium Enolate Aldol (1992) 65

3.5.4 Alkyllithium Polymerization (1995/1999) 66

3.5.5 Tin Transmetallation (2007) 67

3.5.6 Cuprates (2002–Present) 68

3.5.7 n-BuLi Aggregate Reactivity Revisited (2007) 72

3.5.8 Tris(trimethylsilyl)methyl lithium (2008/2009) 74

3.5.9 Enolization and Lithium Aldol (2011) 78

3.6 Conclusion and Outlook 80

References 80

Further Reading 84

4 Spectroscopic Advances in Structural Lithium Chemistry: Diffusion–Ordered Spectroscopy and Solid–State NMR 85

Muriel Sebban, Laure Guilhaudis, and Hassan Oulyadi

4.1 General Introduction 85

4.2 Application of Solution NMR to the Structural Characterization of Organolithium Compounds 86
4.2.1 Diffusion NMR Measurement Methods 88

4.2.1.1 Pulsed Field Gradient Spin Echo (PFGSE) 88

4.2.1.2 From the First to the Second Dimension: DOSY NMR Experiment 89

4.2.2 DOSY Application to the Structural Analysis of Organolithium Compounds 90

4.2.2.1 Structure of the Mixed Methyllithium/Lithium Chloride Aggregate 97

4.2.2.2 Structure of a Lithium Phosphido–Borane 99

4.2.2.3 Structure of Lithium Zincate 101

4.2.3 Conclusion 104

4.3 Solid–State NMR 104

4.3.1 Basic Principles 105

4.3.1.1 Homo and Heteronuclear Dipole–Dipole Couplings (D: Dipole–Dipole) 105

4.3.1.2 Chemical Shift Anisotropy (CSA) 105

4.3.1.3 Quadrupolar Interactions for Nuclei with I < 1/2(Q) 105

4.3.1.4 Magic Angle Spinning (MAS) 106

4.3.1.5 High–Power Heteronuclear Decoupling 107

4.3.1.6 Cross Polarization – Hartmann–Hahn Condition 107

4.3.2 Solid–State NMR – Applications to Organolithium Compounds 108

4.3.2.1 Structure of Lithium Alkyl and Aryl Complexes Stabilized by Nitrogen Ligands 108

4.3.2.2 Symmetry and Geometry of Formed Structures: CIP, SSIP, Sandwich 109

4.3.2.3 Molecular Dynamics 113
5 Mixed Lithium Complexes: Structure and Application in Synthesis 123
Robert E. Mulvey and Charles T. O’Hara

5.1 Introduction 123

5.2 Structural Chemistry of Heterometallic Lithium Complexes 123
5.2.1 Mixed Lithium–Sodium Complexes 124
5.2.2 Mixed Lithium–Potassium Complexes 127
5.2.3 Mixed Lithium–Magnesium Complexes 129
5.2.4 Mixed Lithium–Zinc Complexes 135

5.3 Structural Chemistry of Heteroanionic Lithium Complexes 139

5.4 Synthetic Applications of Lithium Magnesiates: Turbo–Grignard Reagents 142

5.5 Conclusion and Outlook 146

References 146

Further Reading 150

Part II New Synthetic Methodologies Based on Lithium Compounds 151

6 Oxygen–Bearing Lithium Compounds in Modern Synthesis 153
Filippo M. Perna, Antonio Salomone, and Vito Capriati

6.1 Introduction 153
6.2 α-Lithiated Oxygen–Substituted Compounds 153

6.2.1 Acyclic α-Alkoxy Organolithiums 155

6.2.1.1 Nonstabilized α-Alkoxy Organolithiums 155

6.2.1.2 Dipole–Stabilized α-Alkoxy Organolithiums 158

6.2.2 Cyclic α-Alkoxy Organolithiums 163

6.2.2.1 α-Lithiated Oxiranes 163

6.2.2.2 α-Lithiated Oxetanes 171

6.2.2.3 Miscellaneous 173

6.3 ortho–Lithiated Oxygen–Bearing Aromatic Compounds 177

6.4 Remote Lithiated Oxygen–Bearing Compounds 182

6.5 Conclusion and Outlook 185

References 186

Further Reading 190

7 Nitrogen–Bearing Lithium Compounds in Modern Synthesis 191
Leonardo Degennaro, Biagia Musio, and Renzo Luisi

7.1 Introduction 191

7.2 Lithiation of Cyclic Amines 193

7.2.1 Three–Membered Rings: Lithiated Aziridines 194

7.2.2 Four–Membered Rings: Lithiated Azetidines 200

7.2.3 Five–Membered Rings: Lithiated Pyrrolidines 201

7.2.4 Six–Membered Rings: Lithiated Piperidines 210
7.2.5 Seven-Membered Rings: Lithiated Azepines 212

7.2.6 Amino-Organolithiums from Heterocycles with More Than One Nitrogen Atom 212

7.3 Lithiation of Acyclic Amines 216

7.4 Conclusion and Outlook 220

References 221

Further Reading 223

8 Sulfur-Bearing Lithium Compounds in Modern Synthesis 225
José Luis García Ruano, Alejandro Parra, and José Alemán

8.1 Introduction 225

8.2 α-Lithiation 226

8.2.1 Thioethers 226

8.2.2 Sulfoxides 231

8.2.2.1 Alkyl Carbanions 231

8.2.2.2 Vinylic Carbanions 234

8.2.3 α-Sulfones 236

8.2.4 α-Sulfoximines 240

8.3 β-Lithiation (ortho-Directed Lithiation) 243

8.3.1 Sulfides 243

8.3.2 Sulfoxides 244

8.3.3 Sulfones and Sulfonamides 248
8.3.4 Sulfoximines 248

8.4 γ-Lithiation 249

8.4.1 Lateral Lithiation 250

8.4.1.1 Sulfoxides 250

8.4.1.2 Other Aryl Thioderivatives 260

8.4.2 Nitrogenated Fragments 261

8.5 Conclusion and Outlook 262

References 262

Further Reading 270

9 Phosphorus–Bearing Lithium Compounds in Modern Synthesis 271

Fernando L´opez Ortiz

9.1 Introduction 271

9.2 Carbanions Directly Linked to a Phosphorus Atom: PC1Li 272

9.2.1 PC1Li Species via Cα-Lithiation of P(III) Compounds 272

9.2.2 PC1Li Species via Cα-Lithiation of P(V) Compounds 275

9.2.3 PC1Li Species via Reactions of α β-Unsaturated P(V) Compounds 283

9.3 Carbanions Separated by One Atom from the Phosphorus: PC2Li 284

9.3.1 PC2Li Species via XCα-Lithiation (X = N, O) of P(V) Compounds 284

9.3.2 PC2Li Species via ortho–Lithiation of Organophosphorus Compounds 287

9.4 Carbanions Separated by Three Bonds from a Phosphorus Atom: PC3Li 292

9.5 Conclusion and Outlook 293
10 Advances in the Chemistry of Chiral Lithium Amides 297
Anne Harrison-Marchand and Jacques Maddaluno

10.1 Introduction 297

10.2 Chiral Lithium Amides as Bases 297

10.2.1 Enantioselective Conversion of Epoxides into Allylic Alcohols 298

10.2.2 Enantioselective Deprotonation of Cyclic Prochiral Ketones 303

10.2.3 Enantioselective Deprotonation of Bridgehead Carbons 307

10.2.4 Enantioselective Deprotonation of Benzylic Positions 310

10.2.5 Other Reactions 311

10.3 Chiral Lithium Amides as Nucleophiles 312

10.4 Chiral Lithium Amides as Ligands 315

10.5 Chiral Lithium Amides Structures 318

10.6 Conclusion and Outlook 324

References 325

11 Advances in Carbolithiation 329
Yury Minko and Ilan Marek

11.1 Introduction: The Definition of the Carbolithiation Reaction 329

11.2 Intermolecular Carbolithiation of Alkenes 330

11.3 Intramolecular Carbolithiation of Alkenes 338
11.4 Intermolecular Carbolithiation of Alkynes 342

11.5 Intramolecular Carbolithiation of Alkynes 345

11.6 Conclusion and Outlook 347

References 348

Further Reading 350

12 Reductive Lithiation and Multilithiated Compounds in Synthesis 351

Ugo Azzena and Luisa Pisano

12.1 Introduction 351

12.2 Alternative Solvents for Reductive Lithiation Reactions 352

12.3 Reductive Lithiation of Heterocyclic Compounds 354

12.4 Reductive Lithiation via C–C Bond Cleavage 357

12.5 Ammonia–Free Birch Reductions 365

12.6 Silyl–Lithium Derivatives 368

References 371

Further Reading 373

13 Dearomatization and Aryl Migration in Organolithium Chemistry 375

Jonathan Clayden

13.1 Introduction 375

13.2 Intermolecular Dearomatizing Addition Reactions 375

13.3 Intramolecular Dearomatizing Cyclization Reactions 377

13.3.1 Additions to Aryloxazolines 377
14.4.5 α-Lithiated Epoxides 415

14.5 α-Nitrogen–Stabilized Organolithiums 418

14.5.1 α-Lithiated Aziridines 418

14.6 Conclusion and Outlook 420

References 421

Further Reading 422

15 Lithiated Aza–Heterocycles in Modern Synthesis 423

Yves Fort and Corinne Comoy

15.1 Introduction 423

15.2 Direct Metallation with Lithiated Bases versus Nucleophilic Addition to Bare Pyridines and Analogs 424

15.3 Metallation of Dipolar Adducts of Pyridines (N Oxides or BF3 Adducts) 429

15.4 Halogen–Metal Exchange in Aza–Heterocyclic Series 430

15.5 Directed Ortho–Metallation (DoM) of Aza–Heterocycles 432

15.6 Halogen Dance: A Useful Side Reaction 435

15.7 Lateral and Remote Metallations 437

15.8 Lithiation Investigations of the Nicotinic Unit 440

15.9 Miscellaneous Examples of Various Heteroaryl Lithium Reagents as Key Intermediates in Organic Synthesis 445

15.10 Conclusion and Outlook 452

References 453
16 Lithium Compounds in Cross–Coupling Reactions 463
Masaki Shimizu

16.1 Introduction 463

16.2 Cross–Coupling Reactions of Organolithium Reagents 464

16.3 Cross–Coupling Reactions of Lithium Enolates 474

16.4 Cross–Coupling Reactions of Lithium Amides 481

16.5 Cross–Coupling Reactions of Lithium Thiolates 484

16.6 Conclusion and Outlook 486

References 488

17 Microreactor Technology in Lithium Chemistry 491
Aiichiro Nagaki and Jun–Ichí Yoshida

17.1 Introduction 491

17.2 Characteristic Features of Flow Microreactors 492

17.3 Control of Unstable Organolithiums Using Flow Microreactors 493

17.4 Protecting–Group–Free Synthesis Using Flow Microreactors 497

17.5 Stereoselective Reactions Based on Control of Configurationally Unstable Organolithiums Using Flow Microreactors 499

17.6 Switching Reaction Pathways of Organolithiums Using Flow Microreactors 499

17.7 Reaction Integration Using Flow Microreactors 501

17.8 Controlled/Living Anionic Polymerization of Vinyl Monomers Using Organolithium Initiators in Flow Microreactors 503

17.8.1 Controlled/Living Anionic Polymerization of Styrenes 503
17.8.2 Controlled/Living Anionic Polymerization of Alkyl Methacrylates Using Flow Microreactors 506

17.8.3 Controlled/Living Anionic Block Copolymerization of Styrenes and Alkyl Methacrylates Using Integrated Flow Microreactors 508

17.8.4 Controlled/Living Anionic Polymerization of tert-Butyl Acrylates Using Flow Microreactors 509

17.9 Conclusion and Outlook 509

References 510

18 Practical Aspects of Organolithium Chemistry 513
Leonardo Degennaro, Arianna Giovine, Laura Carroccia, and Renzo Luisi

18.1 Introduction 513

18.2 General Preparations of Organolithium Compounds 514

18.2.1 Reduction with Lithium Metal 514

18.2.2 Exchange Reaction from Halides or Organometallics (Transmetalation) 515

18.2.3 Metalation by H/Li Permutation (Deprotonation) 516

18.2.4 Addition of Organolithiums to Unsaturated Systems 517

18.3 Practical Aspects Related to the Use of Organolithiums 518

18.3.1 Stability and Reactivity of Organolithiums 518

18.3.2 Commercially Available Organolithium Compounds 522

18.3.3 Titration of Organolithiums 523

18.4 NMR Analysis of Organolithium Reagents 530

18.5 Hazards Associated with Organolithium Compounds 531
18.6 Setting up of Experiments Using Organolithiums 532

18.7 Transferring Organolithiums 533

18.7.1 Syringe Technique 534

18.7.2 Cannula Technique 535

18.7.3 Conclusion and Outlook 536

References 537

Further Reading 538

Index 539